Codee Training Series
April 26-27, 2022

s7codee

Shift Left Performance

Automated Code inspection for Performance

©Appentra Solutions S.L.
April 2022

Identifying defects in MATTiX
MULtiplication on the GPU with
OpenMP/OpenACC

Goals:
e Produce an OpenMP version for GPU using the “map” clause (do not use “enter/exit data”)

e |dentify the defect PWDOOG6 in the OpenMP version for GPU using “map”
e Build & run an OpenMP code on the GPU (for problem size N=1500)

The GPU programming challenges: Example code PI

Challenges of GPU acceleration Other GPU programming challenges to be addressed in
addressed in introductory course next advanced course

Find Optimize Identify Exploit massive Minimize data Minimize data Identify
opportunities memory layout defects in parallelism transfers transfers auxiliary
for offloading for data data transfers through loop across through functions to be

transfers nest collapsing consecutive convergence offloaded
loop nests loops

Pl
Example
codes used
in this MATMUL
introductor
y course LULESHmk

HEAT X

Your code! Probably all of these challenges apply, and even more!

I‘/COdee Shift Left Performance

The source code of MATMUL using double**

// C (mxn)=A(mxp)*B (pxn)
void matmul(size_t m, size_t n, size_t p, double **A,
double **B, double **C) {

// Initialization

for (size_t i = 0; i < m; i++) {

o é?????? 2 é'e' Jo<ni g+ Ao // Allocate a dynamic array of doubles to store the matrix data linearized
} LIl =5 size_t matBytes = cols * rows * sizeof(double);
} double *memPtr = (double *)malloc(matBytes);
if (!memPtr) {
return NULL;

// Creates a new dense matrix with the specified rows and columns
double **new_matrix(size_t rows, size_t cols) {
if (rows < 1 || cols < 1)
return NULL;

// Accumulation }
for (size_t i = 0; i < m; i++) {
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < p; k++) {
\ Cl[il[]] += A[il[k] * B[kI[]I;

// Allocate an array of pointers to store the beginning of each row
double **mat = (double **)calloc(rows, sizeof(double *));
if (!mat) {

free(memPtr) ;

return NULL;

}

// Set the row pointers (eg. mat[2] points to the first double of row 3)
for (size_t i = 0; i < rows; i++)
mat[i] = memPtr + i * cols;

main(int argc, char *argv[]) {

// Allocates input/output resources
double **in1_mat = new_matrix(rows, cols);
double **in2_mat new_matrix(rows, cols); .
double **out_mat new_matrix(rows, cols); AR LIRSS

matmul(rows, cols, cols, inl_mat, in2_mat, out_mat);

s7codee shift Left Performance

The source code of MATMUL with OpenMP
(defect PWDOO0G6 - Deep Copy -)

// C (mxn)=A(mxp)*B (pxn)
void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) { Inuaortant note: This is the onIyIine of

// Initialization .
for (size_t i = @; i < m; i++) { the source code that was modified, by

for éflﬁ_']c - 8; j < n; j++) | adding an OpenMP offload pragma.
illj ;
t

// Accumulation
#pragma omp target teams distribute parallel for map(to: A, B, C, m, n, p) map(from: C) schedule(static)
for (size_t i = 0; i < m; i++) {
for (size_t j ;] < n; jH) {
for (size_ 0; k < p; k++) {
A[i][k] * B[kI[j];

Note there are hidden errors in this
OpenMP offload pragma, more
specifically in the “map” clause

I’/COdee Shift Left Performance

Inspecting the code and optimizing its performance with
Codee

Repeat until the target L. .
performance is achieved Get the performance optimization report for
(% runtime reduction, the whole code base
speedup)
Profiling tool .
(e.g. GNU gprof) Opportunities (OPP)

Sequential, vectorization, multi-threading and GPU offloading

Recommendations (PWR)

Boost performance and ensure best practices
Defects (PuD)
Find and fix bugs in parallel code and correctness verification

pwreport Remarks (RMK)
Proficient usage of tools

performance pwreport
report pwloops

From all the actions in the performance
optimization report, let's focus on the
so-called “Defects”

pwdirectives

Directives code

(OpenMP, OpenACC, GCC, Clang)

I?COdee Shift Left Performance

1: Produce the report of ALL #actions per type of loops
(pwreport --evaluation --include-tags all --level 2)

$ pwreport --evaluation --level 2 main_pwd@06.c:matmul --include-tags all -- -I include
Compiler flags: -I include

Target Lines of code Analyzed lines Analysis time # actions Effort Cost Profiling
main_pwd@06.c:matmul 56

ACTIONS PER OPTIMIZATION TYPE
Target Serial scalar Serial control Serial memory Vectorization Multithreading Offloading

main_pwd@06.c:matmul @

ACTIONS PER LOOP TYPE PER OPTIMIZATION TYPE
Loop Type No. Loops Serial scalar Serial control Serial memory Vectorization Multithreading Offloading

Law The report contains 2 actions related to
High offloading

Target : analyzed directory or source code file

Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)

Analyzed lines : relevant lines of code successfully analyzed

Analysis time : time required to analyze the target

actions : total actionable items (opportunities, recommendations, defects and remarks) detected

Effort : estimated number of hours it would take to carry out all actions (serial scalar, serial control, serial memory, vectorization, multithreading and offloading with
1, 2, 4, 8, 12 and 16 hours respectively)

Cost : estimated cost in euros to carry out all the actions, paying the average salary of 56,286€/year for a professional C/C++ developer working 1720 hours per year
Profiling : estimation of overall execution time required by this target

SUGGESTIONS
You can specify multiple inputs which will be displayed as multiple rows (ie. targets) in the table, eg:
pwreport --evaluation some/other/dir main_pwd@@6.c:matmul --include-tags all -- -I include

Use --actions to find out details about the detected actions:
pwreport --actions main_pwd@@6.c:matmul --include-tags all -- -I include

You can focus on a specific optimization type by filtering by its tag (serial-scalar, serial-control, serial-memory, vectorization, multithreading, offloading), eg.:
pwreport --actions --include-tags serial-scalar main_pwd@@6.c:matmul -- -I include

1 file successfully analyzed and @ failures in 22 ms

2: Produce the detailed actions for the target function
(pwreport --actions --level 2)

$ pwreport --actions --level 2 main_pwd@06.c:matmul --include-tags all -- -I include

LOOP BEGIN at main_pwd@06.c:matmul:30:5
#pragma omp target teams distribute parallel for map(to: A, B, C, m, n, p) map(from: C) schedule(static)

for (size_t i = 0; 1 < m; i++) {
for (size_t j = 0; j < n; j++) {
for (size_t k = 0; k < p; k++) {
Cl1i][3] += A[il[k] * B[kI[]];

}

[PWDOB6] main_pwd@@6.c:29:5 missing deep copies of non-contiguous arrays 'A', 'B' and 'C' in data transfer to accelerator device
29: #pragma omp target teams distribute parallel for map(to: A, B, C, m, n, p) map(from: C) schedule(static)

SUGGESTION: use OpenMP 4.5 enter/exit data execution statements to ensure that all the memory segments are copied to the memory
of the accelerator device

More information on: https://www.appentra.com/knowledge/pwd0e6

One of the actions related to offload is
the defect PWDOOG, triggered due to the
improper usage of the “map” clause for
the double** data type

s7codee shift Left Performance

3: Benchmarking on Perimutter @NERSC
(using Nvidia toolchain)

S nvc -mp=gpu -fast -gpu=cc88 -I include matrix.c clock.c main_pwd@06.c -o matmul_pwd@e6

$./matmul_pwdee6 1500

- Input parameters

n = 1500

- Executing test...

Fatal error: expression 'HX_CU_CALL_CHECK(p_cuStreamSynchronize(stream[dev]))' (value 1) is not equal to expression 'HX_SUCCESS' (value @)
Aborted

And the execution of the
OpenMP-enabled code reported to
suffer from defect PWDO0O0G6 actually fails

s7codee shift Left Performance

¥ www.codee.com
© info@codee.com

® Subscribe: codee.com/newsletter/

s#codee o USh - Spain

¥ codee com

in company/codee-com/

https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

